close

AlphaGo Zero的啟示:監督學習和無監督學習的利弊



本文系網易智能工作室(公眾號smartman 163)出品。聚焦AI,讀懂下一個大時代!

【網易科技訊 10月24日消息】2016年,作為世界上最好的圍棋選手之一,李世石在首爾的比賽中,以四比一的成績輸給瞭AlphaGo。無論是在圍棋歷史上,還是在人工智能(AI)的歷史上,這都是一件大事。圍棋在中國、韓國和日本的文化中具有的地位就像西方文化中的象棋一樣重要。

在擊敗李世石後,AlphaGo在網上的一系列匿名遊戲中擊敗瞭數十名知名人類選手,隨後在5月重新出現,應對來自中國烏鎮圍棋選手的柯潔。但是柯先生的表現並不比李先生的好,最終以3-0的比分輸給瞭計算機。

對於人工智能研究人員來說,圍棋同樣是被尊崇的。國際象棋在1997年出現在計算機上,Garry Kasparov與IBM的一臺名為深藍的計算機進行對抗,最後輸掉瞭比賽。但是,在李世石失敗之前,圍棋的復雜性讓其很難在機器上表現。AlphaGo的勝利十分引人,它充分展示瞭一種名為“機器學習”的人工智能力量,目標是讓計算機教會自己一些復雜的任務。

AlphaGo通過研究人類專傢棋手之間的數千場對抗,進而從這些遊戲中學習規則和策略,然後在數百萬場比賽中不斷改進,從而學會圍棋。這足以讓它比任何人類都更強大。但是AlphaGo的公司,DeepMind的研究人員相信,他們可以改進這一技術。在剛剛發表在《自然》雜志上的一篇論文中,他們公佈瞭最新版本的“AlphaGo Zero”。它在遊戲中表現得更好,學得更快,需要更少的計算硬件便可以做得好。不過,最重要的是,與原版不同的是,AlphaGo Zero在沒有向人類專傢求助的情況下,成功地自學瞭這款遊戲。

這一技術立刻吸引瞭很多關註。像很多遊戲一樣,學習圍棋雖然容易,卻很難玩好。兩名持黑子與白子選手輪流在一個由19條垂直線和19條水平線組成的棋盤交叉處放置棋子。目標是占領比對手更多的領土。被對手包圍的棋子將從棋盤上移除。玩傢繼續前進,直到雙方都不願繼續。然後,每個人都將他的棋子數目加到所環繞空網格的交叉點上。最後,數量多的將成為贏傢。

困難來自於多種可能的走法。19x19的棋盤上有361個不同的地方,黑色的一方可以最先放置棋子。隨後,白子有360種可能的走法。在棋盤上的走法總數有10170種,這個數字實在是太大瞭,因此無法進行任何物理類比(例如,可觀測宇宙中大約有1080個原子)。

而人類專傢則致力於在更高的層面上去理解這個遊戲。圍棋規則簡單卻會湧現出大量不同情況。玩傢會談論諸如“眼睛”和“梯子”之類的棋局,以及諸如“威脅”和“生與死”之類的概念。但是,盡管人類棋手理解這些概念,但用一種超文字的方式解釋計算機程序要困難得多。相反,最初的Alpha Go研究瞭數千個人類遊戲的例子,這個過程被稱為“監督學習”。由於人類的遊戲反映瞭人類對這類概念的理解,一個接觸到棋局足夠多的計算機也能理解這些概念。一旦AlphaGo在人類教師的幫助下,熟練掌握瞭戰術和策略,便克服瞭重重障礙,開始參加到百萬場無人監督的訓練遊戲,每一場比賽都提升瞭它的技巧。

受監督的學習比圍棋更有用。這是最近人工智能領域取得進步背後的基本理念,它幫助計算機學會做一些事情,比如識別照片中的人臉,可靠地識別人類語音,有效地過濾電子郵件中的垃圾郵件。但是,正如Deepmind老板Demis Hassabis所言,監督學習是有限度的。它依賴於訓練數據的可用性,以及向計算機提供數據,從而向機器顯示它應該做什麼。這些數據必須經過人類專傢的過濾。例如,面部識別的訓練自動分料機推薦數據由成千上萬張圖片組成,有些照片上有人臉,有些則沒有,每一張照片都需要人為的標註。這使得這類數據的成本很高,前提是它們是可以獲取到的。而且,正如論文指出的那樣,這裡可能會存在一些更細微的問題。依靠人類專傢的指導,可能會限制人類對計算機能力的限制。

“AlphaGo Zero”的設計初衷是為瞭避免所有這些問題,從而完全跳過“火車車輪”階段。這個項目的開展利用遊戲規則和“獎勵功能”,即當它贏得比賽便獎勵一點,輸掉則扣除一點。然後不斷進行實驗,反復通過遊戲來對抗其他版本的自己,並受限於獎勵機制,即必須盡可能多地贏得獎勵,從而使獎勵最大化。

這個項目是從隨機放置棋子開始的,機器完全不知道自己在做什麼。但它取得瞭快速的進步。一天之後,它的棋藝便上升到瞭高級專傢級別。兩天之後,它的表現就超過瞭2016年擊敗李世石的版本。

DeepMind的研究人員能夠觀察到他們的自我革新,重新發現人類幾千年來積累起來的圍棋知識。有時候,它看起來像人類一樣詭異。經過大約三個小時,專註於“捕捉棋子”的訓練,這是大多數人類初學者也必須經歷的階段。在另一些人看來,這顯然是外星人。例如,“梯子”是一種棋子的排列模式,當一個玩傢試圖捕獲一群對手的棋子時,他會在棋盤上的對角線上放置。它們是圍棋遊戲的常見局面。因為梯子由一個簡單的重復模式組成,人類新手很快就會學會並去推斷它們,對梯子“搭建”的成功與否進行評估。但AlphaGo Zero——它無法推斷,而是半隨機地嘗試新動作——這花瞭比預期時間更長的時間來掌握這個技巧。

然而,自己學習而不是依靠人類的暗示,總的來說是一個很大的進步。例如,josek是表述棋盤邊緣附近發生的一系列動作的特殊序列。(他們的劇本自然讓他們有點像國際象棋的開場。)AlphaGo Zero發現瞭josek教給人類棋手的準則。但它也發現瞭一些完全屬於自己的方法,並最終成為瞭自己的下棋的首選。負責AlphaGo項目的David Silver表示,這臺機器似乎具有一種明顯非人類的風格。

其結果是一個不僅是超人的項目,而且是令人難以接受的。圍棋(和國際象棋,以及其他許多遊戲)都可以用一種叫做“Elo評級”的東西來量化,它根據過去的表現給出瞭一個玩傢可以打敗另一個玩傢的概率。一個球員有50:50的幾率擊敗對手,但隻有25%的幾率比對手高出200分。柯先生獲勝的支持率為3661。李先生的是3526。在經過40天的訓練後,AlphaGo Zero的得分超過瞭5,000——這一數字遠遠領先超強選手柯潔先生,同時暗指包括柯潔在內的任何一個人類選手都沒有可能打敗它。當它與AlphaGo的第一個擊敗李斯基的版本對戰時,它以100比0獲勝。

當然,比起分料機推薦圍棋,生活中還有很多別的事情。它的創造者希望,像那些為AlphaGo的不同迭代提供動力的算法,理論上可以應用於相似的任務的中。(DeepMind已經利用瞭AlphaGo背後的技術,幫助谷歌大幅削減其數據中心的能耗。)但是,一種無需他人指導就能學習的算法,意味著機器可以在人們不知道如何解決的問題上放手。Hassabis表示,任何可以歸結為通過大量可能性進行智能搜索的事情,都可以從AlphaGo的方法中受益。他列舉瞭一些經典的棘手問題,比如研究蛋白質如何折疊成最終的功能形狀,預測哪些分子可能作為藥物,或者準確地模擬化學反應。




人工智能的進步常常引發人們對人類退化的擔憂。DeepMind希望這類機器最終能成為生物大腦的助手,而不是取代它們,就像從搜索引擎到紙張一樣。畢竟,一臺機器發明新的解決問題的方法,能夠推動人們走上新的、高效的道路。Silver先生表示,AlphaGo的一個好處是,在一個充滿歷史和傳統的遊戲中,它鼓勵人類棋手對古老的智慧提出質疑,並進行實驗。在輸給瞭AlphaGo之後,柯潔研究瞭計算機陣法,尋找靈感。之後,他又以22連勝的成績打敗瞭人類對手,這是一個令人印象深刻的壯舉,即使對於他的對手來說也是如此。畢竟,監督學習是雙向的。

(選自:economists. 翻譯:網易見外翻譯機器人 審校:秦昕)

關註網易智能公眾號(smartman163),獲取人工智能行業最新報告。



本文來源:網易智能

責任編輯:丁廣勝_NT1941

自動化食品機械

台灣電動床工廠 電動床
台灣電動床工廠 電動床
AUGI SPORTS|重機車靴|重機車靴推薦|重機專用車靴|重機防摔鞋|重機防摔鞋推薦|重機防摔鞋
AUGI SPORTS|augisports|racing boots|urban boots|motorcycle boots
一川抽水肥清理行|台中抽水肥|台中市抽水肥|台中抽水肥推薦|台中抽水肥價格|台中水肥清運
X戰警多鏡頭行車記錄器專業網|多鏡頭行車記錄器|多鏡頭行車紀錄器比較|多鏡頭行車紀錄器推薦|多鏡頭行車紀錄器影片
台中抽水肥專業網|台中抽水肥|台中市抽水肥|台中抽水肥推薦|台中抽水肥價格|台中水肥清運
台灣靜電機批發工廠|靜電機|靜電機推薦|靜電油煙處理機|靜電油煙處理機推薦
優美環保科技工程-靜電機,靜電機推薦,靜電機保養,靜電機清洗,靜電油煙處理機


arrow
arrow
    創作者介紹
    創作者 mkc828oe68 的頭像
    mkc828oe68

    動動的預購清單

    mkc828oe68 發表在 痞客邦 留言(0) 人氣()